Category Archives: Photography

White-footed woods mosquito drinking nectar

Here’s a female white-footed mosquito (Psorophora ferox) that I photographed at the John Heinz National Wildlife Refuge in Tinicum, Pennsylvania. I’m not a mosquito expert, so my ID is a guess based on its green eyes and purple coloration. That’s a terrible way to identify a mosquito, I’m sure. It’s a female because the antennae are not especially fluffy Males have massive, bushy antennae for sensing the wingbeat noise that females make, which is at a higher frequency than that of males. I’m posting this photograph because it’s National Pollinator Week and few people appreciate the pollination that mosquitoes perform. But we could kill them all and we’d be fine, I’m sure.

Colin Purrington Photography: Insects &emdash; White-footed woods mosquito (Psorophora ferox) nectaring on goldenrod

Posted in Biology, Gardening, Photography | Tagged , , , , , , , | Leave a comment

Nictitating membrane in a sharpie

If you’ve never been up close to a blinking bird, here’s a GIF that slows down the blink in a sharp-shinned hawk (Accipiter striatus). In addition to using the nictitating membrane to moisten their eye, birds of prey invoke them to protect their eyes from branches during a hunting approach and from prey that might fight back. Humans, sadly, don’t have them anymore, save a little bit of tissue called the plica semilunaris.

As an aside, there’s something rather unnerving about a science fiction movie in which a human is portrayed with functioning membranes. I wonder whether part of our reaction (or my reaction, if it’s just me) is that the membranes might signal the onset of aggressive behavior, where the aggressor is about to strike and wants full protection. I wonder whether animals with functioning nictitating membranes have such a perception. Wouldn’t surprise me.

Sharp-shinned hawk nictitating membrane

 

Posted in Biology, Education, Photography | Tagged , , , , , , | 1 Comment

Kleptoparasitic flies

Here are a few photographs of kleptoparasitic flies stealing hemolymph from a praying mantis dining on a pentatomid. They might be Milichiella arcuata or M. lacteipennis, types of jackal flies, but those are just guesses. Jackal flies (Milichiidae) and frit flies (Chloropidae) are commonly found on dead insects, but the volatiles released by dismembered true bugs are apparently especially attractive (see Zhang and Aldrich 2004). And if you search online for images of jackal flies, they also seem to be common on dead or dying honeybees, so presumably bees exude a volatile that is attractive to flies as well. I’d love to find an article that times the arrival of various kleptoparasitic flies at different types of insects … could use the assemblages to give approximate time of death, I’m sure, just like on CSI. I don’t watch CSI, so I’m guessing here as well.

If you want to know more about jackal flies, I highly recommend Irina Brake‘s “Milichiidae online“, and this post on Ted MacRae’s blog.

Colin Purrington Photography: Insects &emdash; kleptoparasitic-flies-on-hemipteran-2

Colin Purrington Photography: Insects &emdash; kleptoparasitic-flies-on-hemipteran-1-2

Colin Purrington Photography: Insects &emdash; kleptoparasitic-flies-on-hemipteran-3

Colin Purrington Photography: Insects &emdash; kleptoparasitic-fly-with-hemolymph

Posted in Biology, Photography | Tagged , , , , , , , , , , , | Leave a comment

Using mosquitoes’ sweet tooth to control Zika transmission

Now that everyone wants to kill mosquitoes that transmit Zika virus, can somebody please make a transgenic plant that expresses mosquitocidal Bti (Bacillus thuringiensis subsp. israelensis) toxins? Just stick the Bti gene behind a phloem-specific promoter so that the protein gets pumped into the nectar. Then when males and female mosquitoes drink (and almost all do), they die. You could then plant acres of the modified plant nearby towns to protect people from Zika (and anything else transmitted by mosquitoes). The beauty of this method is that you could reduce populations of mosquitoes from an area without spraying, and do so for generations if you modified nectar-producing perennials. I know it’s trendy to dislike GMOs (like vaccines), but I think many people would support them under these circumstances.

And yes, apparently Bti toxins can kill adult mosquitoes (including Aedes aegypti), not just larvae. Klowden and Bulla 1984 demonstrated it, for example. And yes, Aedes aegypti drinks nectar (and probably fruit juice).

Of course, even if somebody had the incentive to make such a plant, it could take a decade to wade through the red tape involved in getting non-regulated status from governments. So if you want to do something today, leave out containers of sugar water (10%) that is laced with Bti (e.g., Mosquito Dunks, which you can buy online or at hardware stores). Maybe add something floral to attract them, too. (A review of olfactory cues suggests that imitation cherry and apple can work. If you don’t have those sitting around, I’d wager a few drops of jasmine flavoring or rose water would work, and those are easily found at local stores.) Even if the Bti doesn’t immediately kill the adult, adults sucking up a big sugar meal can transfer the bacteria to water where they lay eggs, and thus eventually cause the death of any larvae that develop. Note that bees and ants might get interested in your sugar water, but the Bti is completely harmless to them.

And if you don’t want to use Bti, there are plenty of articles on using sugar baits laced with insecticides (e.g., Qualis et al. 2013, Junilla et al. 2015). They really can work: mosquitoes absolutely love sugar and will drink up poisons in the process. These are great if you don’t want to use crop dusters to destroy all insects in the area.

If you have kids and want to entertain them, add food dyes to the sugar bait and then challenge them to find mosquitoes with bellies full of sugar water. For older kids that might be amused by actual science, use two dyes to test attractiveness of two different volatiles (or different sugars). It’s probably rare to recapture one right after a nectar meal, but when distended they reveal gut contents nicely.

Colin Purrington Photography: Insects &emdash; White-footed woods mosquito (Psorophora ferox) nectaring on goldenrod

FYI, the photograph above is a white-footed woods mosquito (Psorophora ferox), not Aedes aegypti. It doesn’t transmit Zika, but illustrates to the unbelieving that mosquitoes drink nectar. 

Posted in Biology, Education, Food, Gardening, Health, Photography, Science | Tagged , , , , , , , , , , , , , , , , , , , , , , , | 1 Comment